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Abstract

Successful application of software engineering methodologies
requires an integrated analysis and design life-cycle in
which the various phases flow smoothly "seamlessly" from
analysis through design to implementation. Furthermore,
different analysis methodologies often lead to different
structuring of the system so that the transition from
analysis to design may be awkward depending on the design
methodology to be used. This is especially important when
object-oriented programming is to be used for implementation
when the original specification and perhaps high-level
design is non-object oriented.
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In this report, two approaches to real-time systems analysis
which can lead to an object-oriented design are contrasted:
first, modelling the system using structured analysis with
real~-time extensions which emphasizes data and control flows
followed by the abstraction of objects where the operations
or methods of the objects correspond to processes in the
data flow diagrams and then design in terms of these
objects; and second, modelling the system from the beginning
as a set of naturally occurring concurrent entities
(objects) each having its own time-behaviour defined by a
set of states and state-transition rules and seamlessly

transforming the analysis models into high-level design
models.
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A new concept of a "real-time systems-analysis object" is
introduced and becomes the basic building block of a series
of seamlessly-connected models which progress from the
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system analysis logical models through the physical
architectural models and the high-level design stages. The
methodology is appropriate to the overall specification
including hardware and software modules. In software
modules, the systems analysis objects are transformed into
software objects.

L Introduction

Successful application of software engineering methodologies
requires an integrated life-cycle in which the various
phases flow smoothly from one to another so that backwards
and forwards traceability is straightforward. Jacobson
emphasizes the need for "seamless models" to avoid errors
defining this concept as: '"two models are said to be
seamlessly related to one another if concepts introduced in
one of the models can be found in the other model through a
simple mapping" (Jacobson,87].

There is considerable difference of opinion about integrated
life-cycles for the software engineering of real-time
Systems. The most widely used approach is based upon
structured analysis and structured design with real-time
extensions [Hatley,88], (Ward,86] and (Bruyn,88]. Another
approach views system development as a set of
transformations starting from the requirements model and
ending with the program model [Jacobson,87]). Jacobson

More recently, there has been much interest in using object-
oriented programming for the implementation of the software
aspects of the system design. Meyer suggests that object-
oriented programming is the most promising approach to
generating reusable software. [Meyer,87]. For a general
discussion of object concepts, see [King,89],
[Nierstrasz,89).

Meyer makes two especially interesting points. First, the
top-down design leads to a structure chart with an excess of
data transmission of arguments up and down the structure and
he indicates that object-oriented design is the solution to
this "tramp data” pProblem. He then states "the law of
inversion": "if there is too much data transmission in your
routines, then put your routines into the data". "Instead of
building modules around operations, and distributing data
structures among the resulting routines, use object-oriented
design which does the inverse by attaching the routines to
the data structures to which they apply".

Meyer's second point is the need for inheritance to defer
features. In particular, he notes that the objects can only
be partially defined in the sense that some operations will
apply to all instances but that many can be defined as to
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their general function but not in detail. He uses an object
called "state" to encapsulate the state-operation of an
example user interface and notes that operations relating to
changing from one state to an other can be completely
defined but a state display operation, while clear as to its
purpose, must necessarily be dependent upon the particular
state being displayed. He indicates that inheritance solves
this difficulty by defining such operations to be "virtual"
in the parent class and then using sub-classes for each kind
of object which requires a different display operation. Thus
some operations are deferred in a manner not unlike the
deferring of detail in standard top-down design.

Parnas emphasises the importance of "data hiding" in
successful designs, suggesting that systems details that are
likely to change independently should be the "secrets" of
separate modules [Parnas,85]. Data hiding is an important
characteristics of objects. It is necessary then to evaluate
the software engineering methodology so that a "seamless"
boundary exists between the systems analysis phases and the
design phases if the design is to be object-oriented.

Falk emphasizes two points: + that the different analysis
methodologies have different starting points for the
modelling of the system which probably leads to different
structuring of the system; and second, that the transition
from analysis to design may be awkward depending on the
design methodology to be used.

In a later paper, Meyer [Meyer,89] argues that the "bottom
up" technique is the real engineering approach and is much
more likely to be successful. He argues that bottom-up
design is the very idea of reusability. He states that the
object-oriented approach to design is a "bottom up" approach
and that its main contribution is to tackle head-on the key
issues of modular design.

Booch emphasizes the limitations of functional decomposition
methods and stresses the advantages of object-oriented
development [Booch,86 and 87], [Meyer,87 and

89], (Parnas,85]),. He recommends that each module in the
system denote an object or class of objects from the problem
Space. Abstraction and information hiding form the
foundation of this object-oriented development.

Earler, Booch indicates that systems defined this way tend
to exhibit characteristics quite different than those
designed with more traditional functional approaches
[Booch,86]. In particular, they tend to be built in layers
of abstraction, where each layer denotes a collection of
objects and classes of objects with restricted visibility to
other layers. He calls such a layer a "subsystem". He also
indicates that the global flow of control in an object-
oriented system is quite different from that of a
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functionally decomposed system which usually has a single
thread of control. Rather, he says, object-oriented designs
lead to multiple threads of control. The author does not
develop this idea further.

[Bailin,89]Bailin author points out that an analysis
methodology based on structured analysis methods (even with
real-time extensions) does not result in a specification
which can be designed in the form of objects (at least
easily). He points out that structured analysis methods
groups functions together if they are constituent steps in
the execution of a higher level function. However these
functions may operate on entirely unrelated and different
data abstractions. In an object-oriented design, however,
the functions represent "methods" of the object and they
operate on the data abstraction of the object itself.
Consequently, the structured analysis methodology results in
a grouping of functions which are associated with different
objects. To perform object-oriented design, then, it is
necessary to manipulate the results of the structured
analysis so that the modules produced correspond to objects.
The author indicates that this is very difficult and an
undesirable but necessary step. Hence he proposes to
constrain the original analysis to the requirement that the
result be compatible with object-oriented design.

Although there is general agreement about the object-
oriented design and programming methodology once objects
have been selected, it is clear that the selection of
objects is the most critical and difficult part of the
overall system design. From a

system perspective, objects must be grouped into tasks and
packages (in the Ada nomenclature) [Buhr,84], [Nielson,88].
Consequently, the overall design problem becomes one of
determining a structure of the software involving objects,
tasks and grouping of objects and tasks including definition
of their concurrency characteristics, intertask
communication, and scheduling which meets the system
specification.

There is, however, no single generally accepted systems
analysis methodology which leads seamlessly and naturally to
an object-oriented programming implementation for real-time
systems. Rather there are two approaches to systems
analysis which can lead to an object-oriented design:

1. Model the system using structured analysis with
real-time extensions which emphasizes data and
control flows. The resulting leveled data and
control flow diagrams are then used to abstract
objects where the operations or methods of the
objects correspond to processes in the data flow
diagrams. Real-time aspects are supported during
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the analysis phase through states and state-
transition descriptions of control processes.

2. Model the system as a set of naturally occurring
entities each having a life-cycle of its own
defined by a set of states and state-transition
rules. The entities become objects. Data flow
diagrams are used to model the processing in each
state and the relationships among objects. These
in turn lead to the definition of operations or
methods for each object. Real-time aspects are
related to concurrent access of the data hidded in
the entities and is left to the design phase.

We conclude that an object-oriented systems analysis is
highly desirable but note that it must be applicable at all
phases and not merely at the software level. To this end,
we introduce the new concept of a "real-time systems-
analysis object" which becomes the basic building block of a
series of seamlessly-connected models which progress from
the system analysis logical models through the physical
architectural models and the real-time software models of
those portions of the systenm implemented as software in
computers. Because of the concentration on objects from the
beginning, there need be no separate transformation to
create the objects at the real-time software design and
object-oriented programming phases. It is shown that "real-
time objects" suitable for this modeling must have many of
the characteristics we associate with tasks in a software
systems.

We propose an analysis-design life-cycle using these real-
time objects which is Closely patterned after the
conventional structured analysis approaches of Hatley
[Hatley,88) , Ward (Ward,86] , and ESML (Bruyn,88]. The
combination of these approaches is first summarized in
section 2. Section 3 defines real-time objects and their
properties. Section 4 presents the life-cycle as a series of
Seamlessly connected systems analysis models which culminate
in an object-oriented software design suitable for an
object-oriented programming implementation.

2. Real-time structured analysis plus object-oriented design

The systems analysis and design of real-time systems
practiced today is based upon structured analysis with real-
time extensions. Much of this work is credited to three
authors. Derek Hatley extended the structured specification
methodology to real-time systems and successfully applied
his methodology in the aerospace environment(Hatley,88]. The
so-called real-time extensions added control and timing
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considerations to the data flow diagram specification which
had previously studiously avoided all questions of "how" or
"when". The result is a specification that is much more
qualitative but still not formal.

His methodology produces a requirements model which is a
"logical" or "essential" model of the system. It is not
concerned with hardware or implementation. Processes execute
in zero time to avoid concurrency. The requirements model is
then transformed into an architecture model which represents
the higher levels of hardware and software design.

Ward proposed an extension to system specifications based on
data flow diagrams which allows the depiction of a system as
a network of potentially concurrent "centers of activity"
(transformations), and of data repositories (data stores),
linked by communication paths (flows) [Ward,86)]. This allows
the representation of control and timing in a system
specification. The paper is important not only because it is
the basis of a commonly used real-time system specification
methodology (the so-called Ward-Mellor methodology) but
because it introduces the concept of qualitative evaluation
of specification including both essential and implementation
schema. The author calls the specification a "transformation
- schema"™ with the word transformation meaning a process in
the sense of conventional structured analysis but extended
to allow both data and control processes.

ESML is a combination of the real-time system modeling
methodologies of Ward-Mellor and Derek Hatley which is
equally applicable to all three of the common approaches to
specifying a system: functional hierarchy; event-response;
and object-oriented [Bruyn,88)]. 1In addition to combining
the ideas of the two methodologies, ESML attempts to make
the model much more rigorous so that the specification
becomes more quantitative.

We summarize these closely related methods below.

2.1. The requirements model

A requirements specification must be a model of the system
in the sense that applying inputs to the model should
specify the corresponding outputs. That is, to test whether
or not a design or implementation satisfies the
specification, it is necessary to be able to test the design
or implementation and determine whether it produces the same
outputs as the specification. Applying inputs to a model to
determine outputs is called "executing”" the model.

Non-real-time structured analysis creates a requirements

model using data flow diagrams and a data dictionary. the
model contains:
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data stores which are repositories of persistent data.
A data store has defined data contents. Data read from
a data store does not remove the data from the store.

Data stores contain no state data. Hence their
outputs are a function of their inputs at the time they
are triggered and not upon their past history. They are
assumed to carry out their transformation in zero time
after being triggered. A non-depletable store is a
normal data store which contains a defined contents
which is persistent and may be read and re-read at
will. A depletable store reduces the count of its
contents each time it is read and useful for modeling
energy or resource usage.

control stores which are repositories of state data
which is persistent over time and a state machine.
Control transforms process input data and control data
processes by signalling them or by activating or
deactivating them. A data process ignores its inputs
when deactivated. An activated data process is
triggered when inputs arrive. A signaled data process
is one which can produce output at any time because it
does not have to wait for data to flow to it along its
data flow inputs. Such a process is triggered by a
control signal which then causes it to response once to
the signal and produce its outputs. Control stores
do contain state data and also contain a state machine.
They also carry out their transformation of control
inputs to ouputs in zero time. They are triggered by
arrival of control inputs.

Buffers are data stores with a specific capacity and
limited to a single data flow input and data flow
output. An arriving flow adds one unit to the buffer
and a flow from the buffer deletes one unit from the
buffer. The author mentions that inputs to the buffer
when it is at its maximum capacity are lost. He does
not defend this strange definition. The author does not
mention reading a buffer that is empty. Note that a
data store, when read, does not remove the information
in the store as does a buffer.

data flows which are pipelines along which packets of
data of known composition may flow. By data is meant
problem oriented data and not control information. Data
flows may be discrete or continuous and are represented
differently (solid arrow with single or double
arrowhead). Flows may be value bearing (data flows
whose data contents are either continuously available
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or available only at discrete instants of time) or non-
value bearing (a signal that an event has occurred) .

control or event flows are represented by a dotted line
with three variations: a control signal has a single
arrow head; an activation control flow has a double
arrowhead pointing toward the process to be activated;
a deactivation control flow has a double arrowhead at
the process to be deactivated but pointing backward.
The addition of control flows which are defined as
pipelines along which control data or no data flow.
When no data flows, the control flow acts like a signal
or interrupt.

Prompts represent control imposed byone control
transformation on another transformation. Prompts are
more extensive than either Hatley or Ward-Mellor
methodologies support. Prompts are:

1. disable/enable which make a transformation
(control or data) active or inactive. A process
made inactive loses all intermitant results and
restarts from scratch when activated again. Since
data transformations carry out their actions in
zero time and have no state, they are merely
activated or deactivated by the disable/enable
prompts. Control transformations however do have
an internal state. Disable followed by enable of a
control process causes it to restart in its
initial state.

2. suspend/resume which makes a process inactive but
without loss of state information so that resuming
the process causes it to continue from where it
left off. Only control transformations have state
so the suspend/resume is relevant to them only.
Suspend/resue and disable/enable are identical for
data transformations which do not have a state.

3. trigger which causes a data transaction to perform
a discrete time action.

external entities which are undefined boundaries of the
system being specified and which as sources and sinks
of data flows entering and leaving the system. External
entities and data flows entering and leaving them
precisely define the boundaries of the system.

data processes which are stateless transformations of
input data arriving in data flows entering the process
or data read upon demand from a data store. The results
of the transformation are output as data flows to data
stores, external entities, or other processes. Flow
transformations may be primitive (not decomposed
further) or non-primitive (hierarchically decomposed).
Primitive flow transformations must be unambiguously
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defined so that outputs can be calculated from inputs.
The form of the specification is not fixed by ESML.

7. control processes (control specs) which are somewhat
equivalent to a control process which accepts control
flow inputs and produces both control flow outputs and
also sets activation/deactivation of processes. Control
specs may contain a state (internal data). Control
transformations are all primitive and each must be
specified. If the control transformation has no state,
a process activation table can be used. If the
transformation contains a state, a state-transition
specification must be provided.

Control specs are always primitive, that is, not
decomposed and precisely defined by either a state
transition diagram (if they have a state) or by
combinational logic and are denoted by a heavy line
(the "bar") on data flow diagrams. Control flows enter
and leave the bar.

For large systems, it is convenient to build the scheme in a
hierarcy where processes (control and data) at one level are
further decomposed or detailed at the next level done.
Transformation schema may be hierarchically decomposed in
the same way that data flow diagrams in structured
specifications are decomposed. Because of the introduction
of control processes with internal state and finite state
machine, additional rules must be imposed. For example, if a
parent process is deactivated, all its childrun processes
are deactivated also.

The model is leveled. The highest level is shown on the
context diagram which contains one process representing the
system, all the external entities, and all data flows to and
from the external entities. All these flows enter or leave
the system.

The next level decomposes the context process showing the
basic processes and data stores of the system and the data
flows into and out of them. Each process may be further
decomposed into its own data flow diagram which shows the
multiple processes into which it is decomposed and the data
flows among them. Processes which are not further decomposed
are called "primitive" and their transformation must be
defined precisely.

A data dictionary collects all definitions of primitive
processes, data flows and their contents, and data stores
and their contents. The specification then, essentially,
consists of the data flow diagrams and the data dictionary.

Integrity of the model implies that data flows entering and
leaving one level must appear on the level above. The
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leveling is a convenient notation and presentation only.
Conceptually, a single data flow diagram showing primitive
processes only could be drawn.

2.2, The hardware architecture model

Standard structured analysis proceeded toward high level
design by enhancing the logical model. That is, as physical
considerations or design decisions were made, they could be
incorporated into the specification, there transforming the
logical model into a physical model. For example, the
decision to use a certain kind of communication line to
bring input data into the system could be modelled with the
appropriate processes and data stores which are necessary in
such devices. Then decisions were made concerning which
processes were to be implemented in hardware and which in
software. The physical model would be further enhanced to
handle new interfaces and other considerations due to these
decisions.

The progression to the physical model and its interface to
the design of software (tasks and modules) was relatively

vague in standard structured design. Hatley enhanced this

process with his so-called architecture model.

The transformation of the requirement model to a more
physical model including specification of both hardware and
software modules and the enhancement of the requirement
model using the Hatley notation and approach.

Hatley's architecture model consists of architecture
modules, architecture flows, and an interconnect
specification. An architecture module is simply a boundary
within which are those processes of the data flow diagram
assigned to it. Connecting architecture modules are
information flow channels (also hardware). Flows into and
out of architecture modules must flow across information
channels. The advantage of the information channels is that
they are precisely defined and localize all information
about their capacity and throughput and permit performance
evaluation of the design to be done.

The creation of the hardware architecture is done using the
leveled data and control flow diagrams. Starting with the
top level, the processes are assigned to architecture
modules which are then successively decomposed as lower
levels are considered. At each stage, the only decision is
what modules are to be used and what processes are to be
assigned to each. Of course, hardware decisions usually
imply enhancement of the model to account for
transformations of data from one physical form to another so
it can actually enter or leave a hardware module.
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A hardware module which is a processor implies that the
processes within it are to be implemented in software. The
Hatley book does not suggest how this is to be done in the
case multiple tasks, real-time operating systems, or real-
time languages such as Ada are to be used. But note that a
decision to use a distributed system (multiple processors)
does indeed specify which processes are to be carried out in
which processor and all details of the communication between
them. For example, an interconnection through messages on a
local area network would entail specification of the local
area network, the message passing protocol, and all
interfaces between the network and the processor. Only the
design of the tasks and software modules and their
interconnection within each processor would be left to carry
out.

Hatley's architecture model is actually a direct extension
of the structured analysis model and as such is a
straightforward transformation from it. The key components
are:

1. Architecture Flow Diagram -- a diagram showing
hardware modules which contain bubbles allocated
to that module, data flows from one to another,
and data flows cross the boundary of the hardware
module. Specification of a hardwre module is
simply the specification of the processes in the
logical model allocated to it.

2 Leveled Architecture Flow Diagram -~ decomposition
of hardware modules into submodules.
3. Architecture Interconnect Diagram -- a diagram

showing the hardware modules, the physical
interconnections between modules, and allocating
data flows to the interconnection.

4. Information Flow Vectors -- specification of
logical data flows flowing along an
interconnection.

5. Physical Model Enhancement by
-- addition of bubbles to a hardware module for

additional processing necessary to accomodate
the physical form of interconnection of input
and output flows.

- additional bubbles defining the physical
implementation of a logical data flow

The series of incremental enhancements of the physical model
represents a gradual transition from the logical to the
physical model. Furthermore, it is possible to think of the
high level design process to consist of a succession of
architectural models each of which is a simple
transformation from the previous. This facilitates
considering alternative design decisions. It also means that
the design process is more integrally (seamlessly) linked
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with the specification. Consequently, it is easy to trace
forward and backward between any stages of the
specification-design.

2.3. The software architecture model

Each computer in the hardware architecture model has been
specified by a set of interconnected data and control
processes, data flows, and data stores. Because the
hardware architecture has included computers, it has been
enhanced so that the interface to the computer has been
considered and flows crossing the boundary have been
specified in terms of messages or signals on buses. It is
next necessary to design a software architecture which
consists of a set of interacting real-time tasks which may
be implemented with object-oriented programming.

There are several approaches to this problem all of which
involve the identification of objects from the structured
anlaysis specification (Bailin,89] [Coad,90] [Nielsen,88].
The Nielsen approach is thoroughly docmented and described
here.

The objective of the software architecture Model is to
recognize concurrency problems, and organize the system into
a set of interacting real-time tasks which meet the
specification despite the concurrency problems. Of course,
throughput and response time specifications must also be
met.

The design is based upon virtual machines and objects.
Starting from the data flow diagram oriented architectural
model of the software, a set of communicating sequential
processes are identified by identifying concurrency in the
data flow diagram, considers a process to be a task, groups
tasks into Ada packages, and designs task bodies. Complex
task bodies are further modularized with the objective of
data-hiding which leads to implementation as objects.

For a real-time system, this machines contains a set of
communicating sequential processes. The processes execute in
parallel but each represents a single-thread sequential
action.

The first step is called "process abstraction" which
involves examining the top level data flow diagram and
identifying those bubbles into groups which can be carried
out in parallel. Heuristics for doing this are:
Group bubbles associated with an external device.
Group bubbles which have functional cohesion.

—_— 12 =



Object-Oriented Real-Time Systems Analysis and Design

Separate bubbles which have time-critical functions so
that they will have their own task.

Separate periodic bubbles for scheduling purposes.

Separate non-critical computationally heavy bubbles so
that they can be assigned to background tasks.

Group bubbles which have temporal cohesion, that is,
have actions which must be carried out at the same
time.

Group bubbles whose storage requirements may require
secondary storage.

Group bubbles that access a shared data base so that
mutual exclusion can be implemented.

It is next necessary to associate the operations with
objects by defining the data structures on which the
operations act. For example, all the operations of a given
process may operate on the same data structure. Then the
object becomes that data structure and that set of
operations.

Operations may be quite complex and operate on data specific
to that operation only or be further decomposed on the data
flow diagram. In these cases, decomposition continues by
defining this operation to be part of a sub-object
containing the data operated on by that operation. This
decomposition produce sub-objects rather than sub-processes.

The major principle used in choosing the objects is data-
hiding, defining the data structures and defining operations
on the data structures which hide the structures from the
users.

Decomposition continues until all operations are associated
with objects and no further decomposition of any operation
is desired.

At this point, the design consists of a set of communicating
sequential processes each of which includes one or more
objects or hierarchies of objects. Notice that there is no
concurrency problem for the objects within a single task. If
objects are shared by two processes, however, there is a
concurrency problem since processes operate in parallel. In
this case, it may be necessary to add additional objects to
control this concurrency (eg, monitors or buffers).

Implementation of the design may now proceed using object-
oriented programming. The task structure and the
interprocess communication of the supporting real-time
oeprating system determine how methods of an object in one
task are used by an object in another task and how
parameters are passed.
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2.4. Execution of the model

Any specification must be a model of the system in the sense
that applying inputs to the model should specify the
corresponding outputs. That is, to test whether or not a
design or implementation satisfies the specification, it is
necessary to be able to test the design or implementation
and determine whether it produces the same outputs as the
specification. Applying inputs to a model to determine
outputs is called "executing" the model.

A logical or essential model is one in which the system is
assumed to be implemented as virtual machines with infinite
resources. Execution of a process in zero time means that
the process changes state in zero time. Hence the lifetime
of a process consists of a series of state changes or
executions separated by time interevals during which the
state does not change. This is the same concept behind
discrete-event simulation of real-time systems and provides
a sound basis for evaluation and use of specifications.

The importance of the (discrete-event) model is that
responses due to inputs which arrive close together are
predicted in an orderly manner. As a practical
consideration, there are no concurrency problems such as
would arise when two processes both read and update an item
in a data store and when the two processes execute in
parallel in an implementation, the overlap of their
execution may produce erroneous results. This is always a
problem in software implementations since task switching
might occur at arbitrary instants of time due to an
interrupt or other event. Consequently, designs must include
mechanisms to prevent concurrency problems (such as
preventing concurrent use of data items with semaphores,
assigning guard tasks or monitors to data, etc). Thus the
model permits the testing of the specification without
regard to concurrency problems.

Arrival of two inputs at the same instant may result in a
"race" condition in the model. If this is significant in the
model, the model must specify a resolution to such
conditions. Such race conditions become more important as
the model progresses toward a more physical model such as in
the hardware and software architectural models. The
resolution becomes part of the design of the system. Notice
that the successive models incorporate more and more
physical considerations which are often considered to be
design considerations. Thus the use of successive models
blurs the distinction between analysis and design.

The software architecture described above requires the
identification of objects as pointed out by Coad [Coad,90].
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This step is critical to the success of the system design
and appears only at the software architecture stage. A
criticism of the approach is that this critical step is very
difficult to carry out from the structured analysis
specification and results in a break in the series of
seamless models comparable to that experienced when using
structured design to create the software architecture
(Sanden, 85 and 88a), [Seidewitz,86a and b], [Bailin,89].

J. Rea]-time structured analysis and design for object-oriented programming

Our objective is to provide a seamless analysis and design
methodology which proceeds from the requirements
specification through the actual design phases based
entirely on the use of objects as the basic building blocks
in order to facilitate the transformation from specification
to design to implementation of software using object-
oriented programming.

3.1. Structured analysis in terms of objects

We take the point of view that a requirements specification
is a strict, although non-formal, representation of the
system in the sense that it can be tested to determine the
required response to any sequence of inputs and events.
Hence any design or implementation can be tested and the
results cmpared to those of the requirements specification.
In principle, the requirements specification must be
sufficient to simulate the system response to inputs and
events. Hence an object-oriented specification must be such
that a conceptual simulation of all objects, their
interactions, input events, and data flows taking place in
parallel in real-time yields the required response of the
system over time.

The specification of a software system and in some cases a
non-software system has been discussed by several authors
[Cameron,89], [Bailin,89]. [Coad,90], [Jacobson,87],
[Sanden,85,88a,88b,89a,89b], [and [Shlaer,88 and 89]. We
summarize from Bailin.

Bailin addresses the specification of a software system
starting immediately from an object-oriented point of view
(Bailin,89]. He uses data flow to link entities (objects)
via "calls". He proposes a top-down approach, decomposing
entities into simpler entities resulting in a set of
entities which can be implemented using object-oriented
programming.

Bailin differentiates between active and passive entities.

Active entities are diagram nodes but passive entities
appear either as data flows or data stores. A passive entity
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corresponds to an entity whose state does not evolve over
time and hence is essentially a data abstraction. Its
methods or functions operate on the data and are initiated
by other entities. Thus an entity is an object, and thus the
system is structured from the beginning as a set of objects.

Bailin allows entities to be decomposed into sub-entities.
Functions are decomposed just as in DFD specifications. The
resulting EDFD hierarchy consists of an upper hierarchy of
entities and sub-entities, a wavy line of lowest-level
entities, and a hierarchy of functions and sub-functions
below each lowest-level entity.

Bailin's object-oriented specification then consists of a
hierarchy of EDFDs and a set of entity relationship (ER)
diagrams. The ER model shows explicitly the relationships
among entities (active and passive). The methodology then
proceeds through the following steps:

1. identify key problem-domain entities.

2. distinguish between active and passive entities.
3. establish data flow between active entities.

4. decompose entities and functions into sub-entities

and functions.
. check for new entities
6. group functions under new entities.
. assign new entities to appropriate domains.

Steps 4 through 7 are iterated to get sufficient detail in
the specification. Clearly the method allows the definition
of objects suitable for object-oriented programming.

Bailin indicates that the methodology can be used for
overall system specifications including hardware but
addresses this only by indicating that "entities are
allocated to hardware" . He does not give any details of
this process. In particular, his concepts of data structures
and calleable functions are not mentioned or defined for a
hardware entity.

There are some problems with his approach to using objects
for systems analysis of general systems as opposed to
software systems. They are:

1. The concept of a "call" of a method is not
appropriate especially for a pair of communicating
hardware objects. Even for software objects, this
is not appropriate for objects which end up in
separate tasks where "triggering” would be more
appropriate.

2. At the specification level, various objects exist
and operate conceptually in parallel. Hence
concurrency, blocking, and collision must be
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defined and understood if the specification is to
actually represent a model of the system.

3. He makes no distinction between class and instance
of the class.

Our objective is a more general object-oriented systems
analysis procedure which can be used throughout the analysis
project, uses objects throughout so that software objects
evolve naturally from the analysis, and makes objects
created during the analysis as reusable as possible in
similar applications. To this end, we adopt as many of the
concepts of both structured analysis and design and object
oriented analysis as described above as possible in order to
take advantage of techniques which have been demonstrated as
successful and useful in specification writing. We emhasize
those aspects which are different in the discussions below.

In the next section we define a "systems analysis object"
which can be used for the building of a specification or
model of a system at both the essential and physical levels,
and which leads naturally to software objects for those
portions of the system implemented in software.

3.2. Definition of systems analysis objects

We first define a Systems Analysis Object which is the basic
building block of object-oriented systems analysis. It
differs from a software object but is transformable to a
software object for those sections of a design which are
implemented as a real-time software system. The guiding
requirement is that an analysis is a model of a system which
weé conceptually examine through discrete event simulation of
the model. '

We use the following terminology for clarity. An object is
a specific instance of a class which in turn is a template
definition common to all instances of that class . Our model
consists of a set of concurrent systems analysis object
instances of classes defined within the model.

A systems analysis object class is similar to the common
notion of a software object but different in important ways.
A class defines an entity containing:

1. an optional state -- a set of attributes (variables)
which define the response of the object instances of
the class to events. For example, an object
representing a military plane might have a state which
indicates whether the airplane is in the cruise or
attack mode.

2. application-specific attributes (variables) which may
be private to the class or public to the class. Private
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attributes are accessible only to the processes
(methods) of the class, Public attributes are directly
accessible to the processes of any class. The
attributes contain data values relevant to the specific
class and are problem-oriented. They are differentiated
from the state attributes only because the
understanding of the class is so dependent upon the
notion of state that it is worthwhile emphasizing this
concept. The inclusion of public and private
attributes is done in the spirit of data-hiding and for
the purpose of creating re-usable systems anlaysis
objects

processes (methods) which are triggered by a data-flow
(defined below). A process is a transformation of the
object-instance's attributes and state which executes
concurrently with other processes of this and other
objects over time but in the sense of discrete event
simulation. Two different views of processes are
commonly used in discrete event simulations: the "time-
process" view and the "event" view.

In the "event" view, a triggered process is a function
which may change the state and attributes of its object
instance and may trigger other processes of this object
instance or other object instances all at the instant
in time at which the process is triggered. An example
of an "event" process might be the process triggered by
the pilot of the above airplane signalling a change
from cruise to attack modes. The function of the
process would change the state accordingly and enable
and disable other processes of the airplane object
instance (see below).

In the "time-process" view, a triggered process makes a
series of states changes, each at a discrete instant of
time. In this view of a process, one imagines that the
state and attributes of the object instance are not
changed by the process between these discrete times
instants at which the state is changed. One may view
the process as an "event" process which after the
initial triggering, is triggered again at later time
instants through internal rather than external
controls. Once triggered, a "time-process" ignores
any further triggers because it controls internally the
future triggers which cause state changes. Thus the
evolution over time of such a process is defined by the
process specification itself. Since the process does
nothing between state changes, the time interval
between changes is specified with the Simula
statements: "wait T second" and "wait until some-
event". Hence the specification of the process is
simply a function containing these statements as well
as the usual structured englished statements used to
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specificy a transformation. The effect of these
statements is to insert a time period between the
succesive state changes specified via the structured
english.

A simple example of a "time-process" might be the
process which "arms" some missles. This process is
triggered by a pilot command. The arming of the missles
takes a finite and significant amount of time. Validity
of the model must take this time in account so that for
example, a firing event cannot occur before the missles
are finished being armed. This process might have the
structured english specification:

disable external triggering of this process
set missle-state to "arming in process"
wait 7 seconds

set missle-state to "armed"

trigger missle-armed process

This specification contains two state changes 7 seconds
apart each of which takes place in zero time. Note that
the first state change prevents external triggering of
this process which means that arrival of an external
trigger would simply be ignored according to this
specification.

It is well known that any dynamic system can be modeled
by either the "event" or "time-process" views. Our
objective is to produce a specification of a system and
clarity of that specification is paramount (as is its
completeness and testability). By allowing both types
of processes within systems analysis objects, we gain
ease of understanding the specification.

We note that the discrete event simulation concept of
state changes in zero-time at discrete time instants
provides a straightforward way to resolve concurrency
problems among object-instances within a specification.
Any concurrency problems due to state changes within a
single object instance or in two or more object
instances at the same time instant are imagined to take
Place in some sequence even though they take zero time
and are all completed at that time instant. The
specification must explicitly recognize and resolve any
race conditions or ambiguities which might arise when
this happens. Furthermore, there is no implict queueing
of data flow triggers and their accompanying data. The
flow of a trigger to a process immediately triggers the
process or is totaly ignored. If the specification is
describing a system in which queueing of data triggers
are necessary, this queueing must be explicitly
modeled. :
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4, enable/disable states of all processes (methods). An
implicit state of the object-instance is always
present. This state indicates for each process whether
it is enabled or disabled. An enabled process responds
to an arriving data-flow trigger. A disabled process
ignores any arriving data-flow trigger. A process
(method) of an object-instance may enable or disable
any other process of the same object-instance but is
prevented from enabling or disabling a process of
another object-instance. Hence in the specification
(model) an object which needs to disable a process of
another object instance must trigger a process (method)
of that other object instance which in turn will do the
disabling.

5. receives and transmits triggers along data flows. A
data flow is a defined path along which defined data
packed may travel. Thus data may or may not accompany a
trigger but unlike the "call" of a software method, no
data is returned as part of the trigger. A process
(method) which must output data to any process must
have a data flow to that process and must initiate a
data flow to that process which in turn triggers the
process.

6. may inherit state, attributes and processes (methods)
from one or more classes. This inheritance implies that
this derived object class contains all the public and
private attributes of the parent classes as well as
additional attributes defined for this class. All the
processes (methods) of the parent classes are also
inherited. Additional processes may be defined for this
class and any inherited processes may be over-ridden or
redefined for this class. Inheritance is an important
concept in a specification because it permits a class
to be defined as a modification of other classes which
in turn helps decrease the volume of the specification
and increases its understandability. It is particularly
important when attempting to reuse specification
classes because it allows their specialization to the
problem at hand without modification of an already
existing class.

3.3. Object data-flow diagrams

Object-oriented design methods have been frequently
criticized because of the difficulty of tracing the response
to an event whereas this is a positive attribute of
structured analysis data-flow diagrams. In a specification,
it is important to be able to trace the jresponse to an
event and consequently, we emphasize this data flow through
object data-flow diagrams on which are shown object
instances with relevant (but not necessarily all) processes
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identified as part of the object instance and data flows
exiting the process which initiates the data flow and enting
the target process which is triggered by the data flow.
There have been many suggestions for graphical icons which
may be used to display an object-instance, its relevant
processes (methods), and even public attributes
[Wasserman,90]. The data flow icon may be taken to be an
arrow from source process to target process. Data which is
passed with the data flow to the target may be defined in a
data dictionary as in structured analysis methodologies, or
be shown with a companlon small arrow with a circle at the
tail as is done in a structure chart in the structured
design methodology. A dash arrow might be used to indicate
pure triggering data flows as is done in real-time
structured analysis for control flows.

The external entitiy of structured analysis is retained as
the source of data flows crossing the system boundary
(entering and leaving the context abstract object).

What ever the graphical icons adopted, the object data-flow
diagram can then be used as a basis for tracing the response
to any event or situation, a major advantage of standard
structured analysis specifications.

34. Decomposition of analysis objects

It is advantagous to retain the hierarchial structuring of
the specification as in standard structured analysis and the
Hatley real-time methodology with one exception. The Hatley
real-time structured analysis methodology separates control
and data processes and allows data processes to be
hierarchially decomposed but not control processes. In
effect, all control processes are terminal processes but
only the lowest level data processes are terminal. We adopt
the following decomposition strategy.

Define an abstract object instance as one which itself has
no processes (methods), state, or data attributes but does
contain object instances. All data flows to this object
terminate on processes of the included object instances and
all data flows emanating from this object exit from
processes of the included object instances. All totally
internal data flows are between processes of the included
object instances. A abstract object instance has no defined
class associated with it. Thus the abstract object instance
is simply a conglomeration of object instances for the
purpose of simplying the understanding of the specification.

Define a terminal object instance as any non-abstract object
instance. It must be an instance of a defined class. It has
attributes, state, and processes (methods). The processes
may be terminal or abstract.
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Define a terminal process as a process of an object class
(method) whose transformation is defined explicitly using,
for example, structured english with possible extensions for
time-processes (wait and wait-until). A terminal process is
not further decomposed.

Define an abstract process as a process of an object class
(method) which is further decomposed into a set of processes
in a hierarchial sense. Data flows entering and leaving the
process are the identical data flows entering and leaving
the decomposing set of processes.

Our object-oriented specification, whether at the essential
model level or the physical model level where many design
decisions have been already made, will consist of a set of
object-instances interconnected via data-flows. Furthermore,
if the model were actually simulated, the object instances
simulated would be terminal object instances.

The abstract object instance has the advantage that it is
not necessary to find a single "action verb" to describe the
~object. Hence a system can be modeled by an abstract object
which can then be subdivided into subsystems each of which
becomes an abstract object. Terminal object instances are
introduced at the appropriate level. This retains the
hierarchial organization of a structured analysis
specification while forcing an object-oriented structuring
at every level.

It is convenient to allow a terminal object instance (not
its class definition) to contain abstract objects and/or
abstract processes. The abstract object or process then
simply represents the set of terminal objects and processes
in a more compact form for clarity and understanding
purposes. Thus the abstract object or processes could be
substituted by their decompositions.

The development of the hierarchial object-oriented
specification applies decomposition in a variety of
different manners as follows.

1. An abstract object instance might be divided into two
(abstract or terminal) object instances. 2all entering
and exiting data flows must enter and exit methods of
the two new object instances. For example the system as
a whole might be specified as a single abstract object
(equivalent to a context diagram in structured
analysis) and then decomposed in abstract objects which
represent subsystems of the total systen.

2. An object class might be divided into two separate

object classes which trigger one another's methods.
Each object instance of the original class would be
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replaced by a pair of object instances of the new
classes with data flows between them. Each data flow
into the original instance would terminate on a method
of one of the replacing instances. Each data flow
leaving the original instance would leave a method of
one of the replacing instances.

3. A process of an object class might be decomposed into
several processes with interacting data flows. This is
the standard decomposition of structured analysis.

Notice that decomposition methods (1) and (2) lead to a
hierarchial relationship among abstract and terminal
objects. Decomposition method (3) is a hierarchial
decomposition of a single process of an object.

Another form of decomposition which is not hierarchial may
naturally occur. Two interacting object instances might be
decomposed by grouping some of the attributes and state of
each object instance into a new instance along with
processes (methods) from each as appropriate. The result
would be two redefined object instances and an entirely new
object instance with interacting data flows. Notice that
this decomposition is not hierarchial. This is better
treated as a refinement of objects during the construction
of the model and the two objects simply replaced by the
three. We do this primarily to preserve the hierarchial
relationships among objects.

Note that classes may be defined by deriving them from other
classes (that is, using inheritance). This is not a form of
decomposition although a central structuring method in a
specification. This form is especially useful when der1v1ng
reusable classes or using existing classes produced in other
specifications.

3.5. Form of the structured object-oriented analysis model

The structured object-oriented specification will consist
of:

1. An inheritance diagram or the equivalent showing the
inheritance relationships among classes.

2. A specification for each terminal class including its
public and private attributes, contained object
instances, and processes and their specification.

3. A hierarchial set of object data flow diagrams starting

from the context level containing a single abstract
object representing the entire system and followed by
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successive decompositions of abstract object instances with
each decomposition of an abstract object instance
consituting a lower level.

The many relationships among objects are all present in one
of the above elements of the specification:

1. One object "contains" another: the data portion of a
class definition includes an instance of another object
class. This is shown in the class definitions.

2. One object "triggers" another: a method of an object
class triggers a method of an instance of another
object class. This is shown in the object data-flow
diagrams.

3. One object class is "derived" from another or
"inherits" another class. This is shown in the
inheritance diagranm.

Of course a separate entity-relationship diagram would be
useful in some specificiations, especially if there are many
object classes representing a data base with application-
dependent relationships among these classes.

4. Structured object-oriented analysis and design methodology

Using the concept of systems analysis objects described
above, we now propose the analysis and design phases of a
software engineering life-cycle which uses consistent models
and whose phases may be incrementally applied resulting in a
sequence of seamlessly related models culminating in an
object-oriented model suitable for implementation of real-
time software using object-oriented programming. The life-
cycle does not make a sharp distinction between analysis and
design, preferring instead to emphasize later models as
being closer to the final physical model which is truly a
design in the case of software. We will call this model of
the software portion of a system the real-time software
architecture. In other design methodologies, this final
model might be called "high level design". The principal aim
of this methodology is to identify objects early in the
analysis phase, repeatedly enhance and redefine them in
later phases and end up with objects already specified when
software implementation begins. This is in response to the
often noted statement that it is very difficult to transform
a non-object-oriented specification or high level design
into a set of software objects.

4.1. The steps of the methodology

The structured object-oriented analysis and design
methodology follows that of the real-time structured
analysis life-cycle. The steps are:
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Create the requirements model

The requirements model in the form of an object
structured specification. This requirement model would
be termed an "essential" model or a "logical" model if
the system does not yet exist but may be a "physical"
model if the system or much of its structure either
exists or is constrained. 1In any case, this
specification would consists of a set of interacting
object instances and could (at least conceptually) be
simulated to determine the required response to any
events.

Create the architectural model

Following the lead of the real-time structured analysis
life-cycle, the first model would be successively
transformed into an architectural model by imposing
hardware boundaries with hardware connection paths
where appropriate and assigning object-~instances from
the previous model to these hardware boundaries.
Enhancement of the model is often necessary such as:

1. adding object classes and instances due to
hardware decisions such as grouping of data flows
along a communication path or changing physical
form of a data flow such as adding sensors and A/D
converters to acquire data for a hardware computer

module.
2. modifying classes because of splitting of
functions among two or more hardware modules.
3. modifying classes and adding classes because of

concurrency or sequencing requirements associated
with hardware decisions.

As in the Hatley methodology, hardware boundaries are
introduced which we model as abstract objects.
Similarly, data flows crossing these boundaries have to
be assigned to hardware channels of some kind. Hence
each such channel is modeled as an abstract object.

A design is viewed as a transformation from a
specification to a final physical model perhaps with
several intermediate models. We adopt the approach of
Hatley which suggests a sequence of transformations
each adding hardware/software design decisions and the
necessary enhancements to the object model these imply.
Hence this step may actually result in a series of
models or designs.

Create the software architectural model
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For each hardware module which corresponded to a
computer in the architectural model, a software
architecture must be created. This important step is
discussed separately in the next section.

4. Transform system-analysis objects into software objects
Systems analysis objects are not the same as software
objects but are closely related. The final design stage
of the analysis-design life-cycle prior to
implementation of the software is the changover of
objects in the software architecture model to software
objects suitable for object-oriented programming. This
step is discussed separately below.

4.2, The real-time object-oriented software architectural model

Each hardware module in the final hardware architectural
model which has been selected to be a computer must further
be enhanced to specify the hardware architecture. Consider
one such computer module. At this stage, certain object
instances have been assigned to the computer. Furthermore,
all data flows crossing the hardware boundaries have been
specified (through enhancements at earlier stages) as to the
hardware channel across which they travel (eg, standard I/O
operations to other hardware modules which represent
devices, multiplexors, sensors, A/D converters, etc) and the
structured english specification of the terminal processes
(methods) of objects within the module refer to these paths.
However, the objects are still systems analysis objects and
considered to execute concurrently with their stage changes
taking place in zero time. Note that although we are still
working with transformations of the same type of model as
used in earlier stages, this level is actually a high level
design level in most software engineering life-cycles. We
will, however, continue to call it specification to
emphasize the seamless nature of the models we use.

The process of changing the systems analysis objects into a
structure which is amenable to real-time software
implementation takes advantage of the fact that the model is
entirely object-oriented and hence there is no special step
required to identify software objects. We will continue,
however, to enhance the model during these later
specification stages which may introduce additional objects.

Real-time software can be thought of as a set of interacting
tasks executing under the control of a real-time operating
system. The real-time operating system may be implicit (as
in an Ada environment where scheduling and other task-
control statements are part of the implementation language)
or explicit. In the latter case, scheduling and other task-
control statements are not part of the implementation
language but rather are calls to systems services.
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Furthermore, the real-time software is very much dependent
on the specific facilities offered by the real-time
operating system (eg, dynamic control over task priority
level, etc). Nonetheless, the most critical areas of real-
time software design are more general than this and include:

1. Identification and resolution of concurrency situations
2. Design for adequate response time and throughput
3. Design for adequate error detection and recovery

Concurrency situations arise from access to shared data and
shared modules. Concurrency has already been considered
earlier in the models where public and private data of an
object instance required access control over a period of
time. As object instances are grouped into tasks, inter-task
communication is required, and this may significantly affect
concurrency, response time, and throughput. Error recovery
especially requires enhancement of the model to insure that
adequate data is somehow logged or retained to permit
recovery. These enhancements further affect response time
and throughput and introduce concurrency situations (egq,
transaction logging prior to commit, etc).

The real-time software architectural model consists of a set
of interacting tasks. Each task is represented by a boundary
surrounding certain object-instances. Each task is imagined
to be implemented by a single software module. Hence a task
module may contain one or more object instances. Any data
flows crossing the task boundary must be realized through
inter-task communication. The data flows among the systems
analysis object instances also imply triggering of the
destination process. Within the task, however, the
triggering of software modules realizing processes of the
object instances must be done through software procedure
calls or the equivalent. It is the task itself which is
triggered. Hence the triggering of process modules by data
flows and the transfer of data accompanying a data flow must
be separately considered.

An object instance's access of public data of another
instance has been treated like a simple look-up or read of
the data because no process had to be triggered. In the
software environment, however, this access has to be
specified more completely because the method by which it is
carried out may seriously affect concurrency, response time,
throughput, and error recovery. For example, an object-
instance may contain public data which is shared among many
objects resulting in many tasks sharing the data in the
software model. The object containing the data may be
specified to be a shared module permanently memory-resident
at a known location as opposed to a task. Hence tasks could
directly reference the public data or call the processes
(methods) of this object. This would be equivalent to a
global common data area. Concurrency problems and errors for
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such designs have to be carefully considered in choosing the
objects assigned to tasks which will then access such an
area.

In any case, the software architecture model is derived from
the hardware architecture model by the following steps:

1. Assign object instances to tasks. This packaging step
is based upon the amount of interaction among objects,
objects whose methods must be carried out at the same
time or at the same rate, etc.

2. Specify how the data flows between tasks are to be
implemented via inter-task communication facilities of
the real-time operating system. This may require
enhancement of the object instances including both
modifications to processes and addition of objects.

3. Specify how a task is to be triggered or scheduled. For
example, the task may execute periodically, upon demand
of any other task, or upon arrival of a message from
another task through an inter-task communication
facility such as a mailbox. Extensive work has been
done on real-time scheduling [Sha,90].

4, Examine the concurrency among the tasks and resolve any
problems using enhancements to the model (eqg, addition
of a monitor to control access to public data),
addition of concurrency conventions (eg, introduction
of semaphores),

It is at the software architectural level that the most
critical design is done. The software architecture must be
evaluated in the three critical areas listed above. The
model is still "executable" in the sense that this model can
be simulated as before. A primary purpose of the simulation
is to detect concurrency situations which might invalidate
the design when the tasks execute processes in other than
zero-time.

Prototyping of the objects and tasks at the software
architectural level also provides a means of testing
response time and throughput as well as detecting
concurrency problens.

4.3. Transformation of systems analysis objects into software
objects

Upon completion of the software architectural model,

individual tasks contain systems analysis as opposed to
software objects. Systems analysis objects and software
objects are not the same although they are similar, For
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example, processes of objects communicate with one another
by triggering the destination bProcess and passing data at
the same time. At the physical level in software, the
communication may be a call if both the source and
desination are in the same software module, perhaps a remote
procedure call if they are in different hardware modules on
a network, global references to data, or communication via
inter-task message passing.

A task is represented as a single program. Hence the next
design step is to transform the systems analysis objects
within one task into software objects within one program,
This involves the following conceptual items:

1. Triggers versus procedure calls. Each data flow may be
replaced by a call of a method of the destination
object with the data transferred as arguments of the
call. This requires enhancement of the object class
definition to turn it into a software object
declaration appropriate to the implementation language.

2. Enhancement of methods to permit data return to the
source method. Recall that systems analysis objects
permit data transfer only in one direction in order to
preserve the ability to track the response to an event.
BBecause software objects permit exchange of data in
both directions, it is possible to modify the methods
of an object and perhaps simplify them. This would
clearly be possible if methodl of object instancel
triggers methodil of object instance 2 (and passes it
data) which in turn triggers method2 of object
instancel passing it data. Then the two methods of
object instancel might be combined in a single method
which calls methodl of object instance2 with both input
and output arguments.

3. Explicit scheduling of data flows to control
concurrency. Methods may trigger multiple methods of
other object instances. When data is being shared, it
may be possible to eliminate a concurrency problem with
the data by simply controlling the sequence in which
the other methods are called. This too results in
enhancements to the methods of the software objects.
For a general discussion of concurrency in object-
oriented programming, see [Nelson,Ql],[Tomlinson,89].

4. Addition of software-specific objects for control of
data structures. within Systems analysis objects, data
might consists of multiple items where specifc items
must be retrieved by one or more identifying keys or by
the sequence in which they were added or they must be
maintained in certain sequences determined by their
data values. In these cases, linked list objects,
sorted array objects and other software specific ,
objects commonly called "container classes" might be
added to the task's object instances.
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Upon completion of this phase of the specification/design,
software classes are completely specified and implementation
can begin.

4.4. Critical analysis situations

The requirement that a specification be capable of (at least
conceptual) simulation implies that the state of an object
evolve over time as a series of changes at discrete instants
of time separated by time intervals whose duration may be
zero. Each state change takes place in zero time.

This poses two severe conceptual problems for real-time
system specification: first, objects may at times be
unavailable to respond to an input data-flow and yet the
specification must yield the correct response to such
situations; and second, concurrent data-flows to the object
must be possible even in the situation where the object's
response is not instantaneous. The first problem requires
the object's methods be capable of being enabled or
disabled. An enabled method responds when triggered by a
data-flow whereas a disabled method ignores the data-flow.
The second problem further requires explicit management of
concurrent access by including a "monitor" function with the
object.

Consider first objects with unavailability intervals. The
common problem of "Wait n secs" is such a case because of
the need to include a specific time interval before another
event can be occur.

For example, consider the object Antenna representing
an antenna on a space vehicle which cannot be used
until it has been deployed. The method Antenna_deploy
is triggered when the antenna should be readied. But
deployment requires a specific time so that other
methods of Antenna cannot be used until that time has
elapsed. In an entity-life oriented discrete event
simulation language such as SIMULA, the method would
include the "wait n secs" step. There are two solutions
to this problen.

First, object Antenna could include a hidden state
variable indicating whether or not the antenna is
deployed. This variable would remain at its un-deployed
value until changed by, perhaps, an external object
which detects successful deployment. Each Antenna
method must be specified to test the state variable to
determine whether to carry out its response function or
to do nothing in response to a triggering data-flow.

Second, the Antenna_deploy method could disable all the
other methods which would then ignore any triggering
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data flows. The external object which detects
successful deployment, would then use an Antenna method
to enable its previously disabled methods.

In either case, specification of objects interacting
with the Antenna object must understand that the
Antenna methods may be disabled or be non-responding at
times and include proper specification for situations
where the methods do not respond.

Consider the common problem of "wait_until" in which an
object must synchronize with another object at an
undetermined time defined by a data condition within the
second object.

For example, object Scan is periodically triggered to
scan a temperature data sensor, compare the resulting
value to a limit, and set its internal alarm value
variable to OFF or ON depending upon whether or not the
limit is exceeded.

Depending upon conditions, method Alarm_recover of
object Alarm sometimes should be triggered when the
above alarm level goes from OFF to ON. The conditions
under which it is to be triggered are internal to
object Alarm. Thus object Scan cannot know whether or
not to trigger method Alarm_recover. This problem can
be handled by decomposing method Alarm recover into two
methods, Alarm connect and Alarm handle where
Alarm_connect sends a data-flow to a method of object
Scan which records the desire to be notified, and
Alarm_handle is the method which is subsequently
triggered by object Scan when the alarm condition is
detected.

An alternate solution adds a state variable to object
Alarm indicating interest in responding to the alarm
condition. Object Scan can then trigger the alarm
recovery method of object Alarm each time the alarm
occurs and that method can determine whether or not to
respond by examining its internal state variable.

A third solution makes use of enable/disable of the
Alarm recover method itself, still allowing object Scan
to trigger the method each tlme the alarm condition
occurs. If object Alarm should not respond, that method
is disabled and hence the triggering data flow is
ignored. If it should respond, the method is enabled
and then responds to the triggering data flow.

Even if methods execute infinitely fast, it is possible to
create a method that takes a finite time to execute.
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For example: Let Object2 be time triggered each 1
second at which time the value X and its timestamp are
updated. The clock triggers method 02 _update. Let
Object2 have a second method 02_value which returns the
value of X and its timestamp.

Let Object 1 have a method which executes:

t_stamp = current time - 1
while (current_time - t_stamp) > 0.25
(value,t_stamp) = Object2.02_value();

The while loop executes an infinite number of times,
producing a wait of up to 0.75 seconds because the loop
executes until the next time tick if its first read is
more than 0.25 seconds old.

Execution of our object-oriented systems analysis model
makes state changes in zero time as in the usual discrete-
event simulation models of systems. This leads to a possibly
ambiguous result because the triggering of an object can
involve triggering of processes of two or more other objects
at the same instant. Changes to the sequence of state
changes which result at a single instant of time can result
in different final states of the system. We note that there
is the same possible ambiguity in the Ward-Hatley-EMSL
models. Such ambiguity is also present in real systems. For
example, the arrival of a set of orders in a mail delivery
and the subsequent filling of those orders can result in
quite different results depending upon the order in which
the orders which were all received at the same time are
actually filled. A particular order might be filled if one
sequence is used but only partially filled for a different
sequence. Clearly the specification of a system must then
specify sequence if in fact the sequence is important. In
the order filling example, the specification might insert a
process (step) which sorts the orders by some criterion
(value of the order, age of inventory of ordered items, etc)
to remove such ambiguity. In the software area, recognition
of possible ambiguities is often important.

For example, suppose that a data-acquisition system is
specified to report sensor values on an exception basis
(that is, report new samples only if the value has
changed more than some specified amount. Suppose it
maintains a list of such exception-values as it
periodically scans the sensors and detects exceptions.
Suppose further that perodically a process collects
exceptions, packs them into a message, and transmits
the messages across a network.

Then the triggering of the scan process which builds

the exception list and the message-packing process
which takes exception values in the list and builds a
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message for reporting might occur at the same instant.
The sequence in which the processes are carried out can
result in the message-packing occurring before the
scanning so that only exception values previously
scanned are packed into a message for transmission.
This would result in a delay in transmission of the
exception values equal to the time between triggering
of scanning if it occurred often and a consequent
deteriation of the response time of the design.

Recognition of this should result in its consideration
in the design, by assigning the objects owning these
processes to different tasks and assigning the scan
task higher priority for example, or by creating
another object which explicitly triggers both of these
processes in the proper order.

9. Conclusions

The two approaches to analysis and design are very similar
but differ in one significant respect: the object-oriented
approach clusters data and processes into objects from the
very beginning. Hence the transition from analysis to design
in this approach does not require an abrupt change in the
model through the introduction of objects as it does using
the structured analysis methodology followed by the Bailin
approach discussed in section 3.1 which involves abstracting
objects from the data flow diagrams. Although this approach
has been proposed and used [Seidewitz,86a and 86b], it seems
to be much more difficult to carry through and is subject to
more effort if the analysis model ahead of this stage is
modified. In contrast, an analysis model already object
oriented does not require this step and does not require
extra effort to incorporate modifications to the earlier
models. This is the payoff of a series of "seamless" models.

There also seems to be a conceptual simplification using the
object oriented approach with systems analysis objects as
the basic building blocks since such objects correspond to
natural systems and subsystems whereas structured analysis
requires a single function to be associated with this
decomposition.

One potential advantage for the use of systems analysis
objects may be in the reuse of portions of an analysis
model. For example, an organization which creates multiple
applications often finds that the applications interact with
one another and this interaction is important in the
analysis and design. With an object oriented systems
analysis model, the interaction may result in the sharing of
objects so that previous analysis objects might be
incorporated into the new model. In other situations, the
objects might need to be tailored to a new application and
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again the use of inheritance may allow the reuse of
previously created systems analysis objects.
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